

General Certificate of Education

Mathematics 6360

MFP1
 Further Pure 1

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comments
1(a)	$\alpha+\beta=2, \alpha \beta=\frac{1}{3}$	B1B1	2	
(b)	$\begin{aligned} & \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\ & \ldots=8-3\left(\frac{1}{3}\right)(2)=6 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \mathrm{m} 1 \mathrm{~A} 1 \end{gathered}$	3	or other appropriate formula m1 for substn of numerical values; A1 for result shown (AG)
(c)	Sum of roots $=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}$	M1		
	$\ldots=\frac{6}{1 / 3}=18$	A1F		ft wrong value for $\alpha \beta$
	$\text { Product }=\alpha \beta=\frac{1}{3}$	B1F		ditto
	Equation is $3 x^{2}-54 x+1=0$	A1F	4	Integer coeffs and " $=0$ " needed; ft wrong sum and/or product
	Total		9	
2(a)	$z^{2}=1+2 \mathrm{i}+\mathrm{i}^{2}=2 \mathrm{i}$	M1A1	2	M1 for use of $\mathrm{i}^{2}=-1$
(b)	$\begin{aligned} & z^{8}=(2 i)^{4} \\ & \ldots=16 i^{4}=16 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	or equivalent complete method convincingly shown (AG)
(c)	$\begin{aligned} & \left(z^{*}\right)^{2}=(1-i)^{2} \\ & \ldots=-2 \mathrm{i}=-z^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	for use of $z^{*}=1-\mathrm{i}$ convincingly shown (AG)
	Total		6	
3	$\sin \frac{\pi}{2}=1$ stated or used Introduction of $2 n \pi$ Going from $4 x+\frac{\pi}{4}$ to x $x=\frac{\pi}{16}+\frac{1}{2} n \pi$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	4	Deg/dec penalised in 4th mark (or $n \pi$) at any stage incl division of all terms by 4 or equivalent unsimplified form
	Total		4	
4(a)	$\mathbf{I}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]$	B1		stated or used at any stage
	Attempt at $(\mathbf{A}-\mathbf{I})^{2}$	M1		with at most one numerical error
	$(\mathbf{A}-\mathbf{I})^{2}=\left[\begin{array}{ll} 0 & 4 \\ 3 & 0 \end{array}\right]\left[\begin{array}{ll} 0 & 4 \\ 3 & 0 \end{array}\right]=12 \mathbf{I}$	A1	3	
(b)	$\mathbf{A}-\mathbf{B}=\left[\begin{array}{cc} 0 & 1 \\ 3-p & 0 \end{array}\right]$	B1		
	$\begin{aligned} & (\mathbf{A}-\mathbf{B})^{2}=\left[\begin{array}{cc} 3-p & 0 \\ 0 & 3-p \end{array}\right] \\ & \ldots=(\mathbf{A}-\mathbf{I})^{2} \text { for } p=-9 \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1F } \end{gathered}$	4	M1 A0 if 3 entries correct ft wrong value of k
	Total		7	

MFP1

Q	Solution	Mark	Total	Comments
5(a)	$x^{-1 / 2} \rightarrow \infty \text { as } x \rightarrow 0$	E1	1	Condone " $x^{-1 / 2}$ has no value at $x=0$ "
(b)(i)	$\int x^{-1 / 2} \mathrm{~d} x=2 x^{1 / 2}(+c)$	M1A1		M1 for correct power of x
	$\int_{0}^{1 / 66} x^{-1 / 2} \mathrm{~d} x=\frac{1}{2}$	A1F	3	ft wrong coefficient of $x^{1 / 2}$
(ii)	$\int x^{-5 / 4} \mathrm{~d} x=-4 x^{-1 / 4}(+c)$	M1A1		M1 for correct power of x
	$x^{-1 / 4} \rightarrow \infty$ as $x \rightarrow 0$, so no value	E1F	3	ft wrong coefficient of $x^{-1 / 4}$
	Total		7	
6(a)(i)	Coords (3, 2), (9, 2), (9, 4), (3, 4)	M1A1	2	M1 for multn of x by 3 or y by 2 (PI)
(ii)	R_{2} shown correctly on insert	B1	1	
(b)(i)	R_{3} shown correctly on insert	B2,1F	2	B1 for rectangle with 2 vertices correct; ft if c 's R_{2} is a rectangle in 1st quad
(ii)	Matrix of rotation is $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$	B1	1	
(c)	Multiplication of matrices	M1		(either way) or other complete method
	Required matrix is $\left[\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right]$	A1	2	
	Total		8	
7(a)(i)	Asymptotes $x=2, y=0$	B1B1	2	
(ii)	One correct branch	B1		
	Both branches correct	B1	2	no extra branches; $x=2$ shown
(b)(i)	$\mathrm{f}(3)=-1, \mathrm{f}(4)=3$	B1		where $\mathrm{f}(x)=(x-3)(x-2)^{2}-1$; OE
	Sign change, so α between 3 and 4	E1	2	
(ii)	$\mathrm{f}(3.5)$ considered first	M1		OE but must consider $x=3.5$
	$\mathrm{f}(3.5)>0$ so $3<\alpha<3.5$	A1		Some numerical value(s) needed
	$\mathrm{f}(3.25)<0$ so $3.25<\alpha<3.5$	A1	3	Condone absence of values here
	Total		9	

MFP1

Q	Solution	Mark	Total	Comments
8(a) (b)	$\Sigma r^{3}+\Sigma r=\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{2} n(n+1)$ Factor n clearly shown $\ldots=\frac{1}{4} n(n+1)\left(n^{2}+n+2\right)$ Valid equation formed Factors $n, n+1$ removed $3 n^{2}-29 n-10=0$ Valid factorisation or solution $n=10$ is the only pos int solution	M1 m1 A1A1 M1 m1 A1 m1 A1	5	at least one term correct or $n+1$ clearly shown to be a factor OE; A1 for $\frac{1}{4}$, A1 for quadratic OE of the correct quadratic SC $1 / 2$ for $n=10$ after correct quad
	Total		9	
9(a)	$\begin{aligned} & x=2, y=0 \Rightarrow \frac{4}{a^{2}}-0=1 \text { so } a=2 \\ & \text { Asymps } \Rightarrow \pm \frac{b}{a}= \pm 2 \text { so } b=2 a=4 \end{aligned}$	E2,1 E2,1	4	E1 for verif'n or incomplete proof ditto
(b)	Line is $y-0=m(x-1)$ Elimination of y $\begin{aligned} & 4 x^{2}-m^{2}\left(x^{2}-2 x+1\right)=16 \\ & \text { So }\left(m^{2}-4\right) x^{2}-2 m^{2} x+\left(m^{2}+16\right)=0 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	OE OE (no fractions) convincingly shown (AG)
(c)	Discriminant equated to zero $4 m^{4}-4 m^{4}-64 m^{2}+16 m^{2}+256=0$ $-3 m^{2}+16=0$, hence result	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	OE convincingly shown (AG)
(d)	$\begin{aligned} & m^{2}=\frac{16}{3} \Rightarrow \frac{4}{3} x^{2}-\frac{32}{3} x+\frac{64}{3}=0 \\ & x^{2}-8 x+16=0, \text { so } x=4 \end{aligned}$ Method for y-coordinates $y= \pm 4 \sqrt{3}$	$\begin{gathered} \text { M1 } \\ \text { m1A1 } \\ \text { m1 } \\ \text { A1 } \end{gathered}$	5	using $m= \pm \frac{4}{\sqrt{3}}$ or from equation of hyperbola; dep't on previous m1
	Total		16	
	TOTAL		75	

